Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Diagn Progn Res ; 5(1): 4, 2021 Feb 08.
Article in English | MEDLINE | ID: covidwho-1069608

ABSTRACT

BACKGROUND: The aim of RApid community Point-of-care Testing fOR COVID-19 (RAPTOR-C19) is to assess the diagnostic accuracy of multiple current and emerging point-of-care tests (POCTs) for active and past SARS-CoV2 infection in the community setting. RAPTOR-C19 will provide the community testbed to the COVID-19 National DiagnOstic Research and Evaluation Platform (CONDOR). METHODS: RAPTOR-C19 incorporates a series of prospective observational parallel diagnostic accuracy studies of SARS-CoV2 POCTs against laboratory and composite reference standards in patients with suspected current or past SARS-CoV2 infection attending community settings. Adults and children with suspected current SARS-CoV2 infection who are having an oropharyngeal/nasopharyngeal (OP/NP) swab for laboratory SARS-CoV2 reverse transcriptase Digital/Real-Time Polymerase Chain Reaction (d/rRT-PCR) as part of clinical care or community-based testing will be invited to participate. Adults (≥ 16 years) with suspected past symptomatic infection will also be recruited. Asymptomatic individuals will not be eligible. At the baseline visit, all participants will be asked to submit samples for at least one candidate point-of-care test (POCT) being evaluated (index test/s) as well as an OP/NP swab for laboratory SARS-CoV2 RT-PCR performed by Public Health England (PHE) (reference standard for current infection). Adults will also be asked for a blood sample for laboratory SARS-CoV-2 antibody testing by PHE (reference standard for past infection), where feasible adults will be invited to attend a second visit at 28 days for repeat antibody testing. Additional study data (e.g. demographics, symptoms, observations, household contacts) will be captured electronically. Sensitivity, specificity, positive, and negative predictive values for each POCT will be calculated with exact 95% confidence intervals when compared to the reference standard. POCTs will also be compared to composite reference standards constructed using paired antibody test results, patient reported outcomes, linked electronic health records for outcomes related to COVID-19 such as hospitalisation or death, and other test results. DISCUSSION: High-performing POCTs for community use could be transformational. Real-time results could lead to personal and public health impacts such as reducing onward household transmission of SARS-CoV2 infection, improving surveillance of health and social care staff, contributing to accurate prevalence estimates, and understanding of SARS-CoV2 transmission dynamics in the population. In contrast, poorly performing POCTs could have negative effects, so it is necessary to undertake community-based diagnostic accuracy evaluations before rolling these out. TRIAL REGISTRATION: ISRCTN, ISRCTN14226970.

2.
BMC Med ; 18(1): 346, 2020 11 04.
Article in English | MEDLINE | ID: covidwho-908264

ABSTRACT

BACKGROUND: Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral ribonucleic acid (RNA) using reverse transcription polymerase chain reaction (RT-PCR) are pivotal to detecting current coronavirus disease (COVID-19) and duration of detectable virus indicating potential for infectivity. METHODS: We conducted an individual participant data (IPD) systematic review of longitudinal studies of RT-PCR test results in symptomatic SARS-CoV-2. We searched PubMed, LitCOVID, medRxiv, and COVID-19 Living Evidence databases. We assessed risk of bias using a QUADAS-2 adaptation. Outcomes were the percentage of positive test results by time and the duration of detectable virus, by anatomical sampling sites. RESULTS: Of 5078 studies screened, we included 32 studies with 1023 SARS-CoV-2 infected participants and 1619 test results, from - 6 to 66 days post-symptom onset and hospitalisation. The highest percentage virus detection was from nasopharyngeal sampling between 0 and 4 days post-symptom onset at 89% (95% confidence interval (CI) 83 to 93) dropping to 54% (95% CI 47 to 61) after 10 to 14 days. On average, duration of detectable virus was longer with lower respiratory tract (LRT) sampling than upper respiratory tract (URT). Duration of faecal and respiratory tract virus detection varied greatly within individual participants. In some participants, virus was still detectable at 46 days post-symptom onset. CONCLUSIONS: RT-PCR misses detection of people with SARS-CoV-2 infection; early sampling minimises false negative diagnoses. Beyond 10 days post-symptom onset, lower RT or faecal testing may be preferred sampling sites. The included studies are open to substantial risk of bias, so the positivity rates are probably overestimated.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/standards , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/genetics , Humans , Longitudinal Studies , Pandemics , Pneumonia, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL